
21

International Journal of Recent Research and Review, Vol. XII, Issue 1, March 2019

ISSN 2277 – 8322

Software Testing using Intelligent Water Drop (IWD) Algorithm
Baraa S. Alhafid, Laheeb M. Alzubedy

Software Engineering Department, Mosul University, Mosul, ZIP/+964, Iraq

AbstractـــــSoftware engineering plays a vital role in

software testing process to avoid errors and defects in

software before deliverer to the customer. To support all

this, software rely on artificial intelligence techniques that

are used in the development phases of software

engineering, particularly in the software-testing phase,

which gives the results of high quality and accuracy.

Keyword ــــــ Software testing, intelligent water drop

algorithm, swarms intelligent, basis path testing, white

box testing.

I. INTRODUCTION

Software test is the main approach to find errors and

defects assuring the quality of software. Software

testing is an expensive component of software

development and maintenance. Testing is a complex,

labor-intensive, and time consuming task thataccounts

for approximately 50% of the cost of a software system

development [4], incorporating the applicable criteria

that follow components, Aim of the software testing is

to uncover errors and faults present in the program, so

that customer requirement can be properly fulfilled.

Testing phase includes in the review of specification,

analysis, design, and implementation part of the

Software Development Life Cycle (SDLC)[7]. Due to

the lack of cost and reliability, automation of testing

process is necessary, so that the cost of testing can be

reduced. Artificial Intelligence (AI) based techniques

can help in removing this situation. AI based technique

helps in solving the problem by using fast and proper

judgments rather than using step by step deduction

[2].In this paper, the tools and techniques of artificial

intelligence were studied and employed in software

engineering. And that is conducted through using the

swarm algorithms (Intelligent Water Drop Algorithm)

in generating independent path of the software written

with C++ language in an automatic way because that

enables the corporation which develops the program to

save time and costs as well as ensuring the test process

quality, which is estimated by 50% of the product cost.

And in this paper, Independent Paths Generator Tool

(IPGT) is constructed to generate independent paths in

the programs it was also parser tool is constructed to

generate control flow graphs for the programs that

will be tested where control flow graphs helps In the

perception of all the paths in the program unit which

helps in the process of determine independent paths.

The proposed (IPGT) tool succeeded in generating

independent paths for several programs and in a very

short time. The paper is structured as follows: section II

introduces related work, section III present testing in

software engineering with the objective and type of

software testing, section IV describes the intelligent

water drop algorithm, section V includes the

Experimental Results, section VII includes Conclusions.

II. RELATED WORK

Various techniques have been proposed for automated

testing to reduce efforts to a remarkable extent.

 Andreas W., Stefan W.,Joachim W.in (2007)

suggested an empirical comparison of a genetic

algorithm and a particle swarm algorithm applied to

evolutionary structural testing. We selected 25

artificial test objects that cover a broad variety of

search space characteristics (e.g. varying number of

local optima), and 13 industrial test objects taken

from various development project. The results

indicate that particle swarm optimization is well-

suited as a search engine for evolutionary structural

testing and tends to outperform genetic algorithms in

terms of code coverage achieved by the delivered test

cases and the number of needed evaluations [5].

 Praveen R. S. , Tai-hoon K.in (2009) presents a

method for optimizing software testing efficiency by

identifying the most critical path clusters in a

program. We do this by developing variable length

Genetic Algorithms that optimize and select the

22

software path clusters which are weighted in

accordance with the criticality of the path. Exhaustive

software testing is rarely possible because it becomes

intractable for even medium sized software. Typically

only parts of a program can be tested, but these parts

are not necessarily the most error prone. Therefore,

they are developing a more selective approach to

testing by focusing on those parts that are most

critical so that these paths can be tested first. By

identifying the most critical paths, the testing

efficiency can be increased [12].

 Surender S. D. , Jitender K. C. , Shakti K. in (2010)

presents an artificial bee colony based novel search

technique for automatic generation of structural

software tests. Test cases are symbolically generated

by measuring fitness of individuals with the help of

branch distance based objective function. Evaluation

of the test generator was performed using ten real

world programs. Some of these programs had large

ranges for input variables. Results show that the new

technique is a reasonable alternative for test data

generation, but doesn’t perform very well for large

inputs and where constraints are having many equality

constraints [11].

 Sanjay S., Dharminder K., H M Rai and Priti S. in

(2011) presents a technique that based on a

combination of genetic algorithm (GA) and particle

swarm optimization (PSO), and is thus called GPSCA

(Genetic-Particle Swarm Combined Algorithm) which

is used to generate automatic test data for data flow

coverage with using dominance concept between two

nodes. The performance of the proposed approach is

analyzed on a number of programs having different

size and complexity. Finally, the performance of

GPSCA is compared to both GA and PSO for

generation of automatic test cases to demonstrate its

superiority [4].

 Ahmed S. G., O.Said , Sultan AL j.in (2012)

presentspaper deals with Automatic Generation of

Feasible Independent Paths and Software Test Suite

Optimization using Artificial Bee Colony (ABC)

based novel search technique. In this approach, ABC

combines both global search methods done by scout

bees and local search method done by employed bees

and onlooker bees. The parallel behavior of these

three bees makes generation of feasible independent

paths and software test suite optimization faster. Test

Cases are generated using Test Path Sequence

Comparison Method as the fitness value objective

function. This paper also presents an approach for the

automated generation of feasible independent test

path based on the priority of all edge coverage

criteria. Finally, this paper compares the efficiency of

ABC based approach with various approaches [8].

III. TESTING IN SOFTWARE ENGINEERING

There are a many definitions of software testing, but

one can shortly define that as: "A process of executing a

program with the goal of finding errors". So, testing

means that one inspects behavior of a program on a

finite set of test cases (a set of inputs, execution

preconditions, and expected outcomes developed for a

particular objective [9]. There are three type of testing

namely Black box Testing, White box Testing and Gray

box Testing. In this paper a White box testing is used,

White box testing based on an analysis of internal

working and structure of a piece of software. White box

testing is the process of giving the input to the system

and checking how the system processes that input to

generate the required output as illustrated in Fig 1 .It

is necessary for a tester to have the full knowledge of

the source code. White box testing is applicable at

integration, unit and system levels of the software

testing process. In white box testing one can be sure that

all parts through the test objects are properly executed

[10].

Fig. 1. Represent working process of White Box Testing

The types of white box testing techniques are [10] :

1. Control Flow Testing

2. Branch Testing

3. Basis Path Testing

4. Data Flow Testing

5. Loop Testing

23

 The basis path testing

Basis path testing is a white-box testing technique first

proposed by Tom McCabe [13] and it allows the test

case designer to produce a logical complexity measure

of procedural design and use this measure as an

approach for outlining a basic set of execution path

(basic set is the set of all the execution of a procedure).

These are test cases that exercise basic set will execute

every statement at least once. Basic path testing makes

sure that each independent path through the code is

taken in a predetermined order. For this reason Basis

Path Testing is used in this paper. The method devised

by McCabe to carry out basis path testing has four

Steps. These are [5]:

 Compute the program graph.

 Calculate the cyclomatic complexity.

 Select a basis set of paths.

 Generate test cases for each of these paths

A. Flow Graph Notation

Before we consider the basis path method, a simple

notation for the representation of control flow called

allow graph (or program graph) must be introduced,

The flow graph depicts logical control flow using the

notation illustrated in Fig 2, Each structured construct

has a corresponding flow graph symbol [13].

Fig. 2 Flow Graph Notation.

Control Flow Graph (CFG) describes the sequence in

which the statements/instructions of a program are

executed. It is representation of flow of control through

the program. CFG is directed graph in which each node

is a program statement/basic block and each edge

represents the flow of control between statement/basic

blocks. A basic block is a sequence of consecutive

statements in which flow of control enters at the

beginning and leaves at the end without halt or possibly

of branching except at the end [8]. In a CFG, a node

including condition is called a predicate node as shown

in fig. 3, and edges from the predicate node must

converge at a certain node. Area defined by edges and

nodes is referred to as region [13].

Fig. 3 Predicate node.

On a flow Graph as shown in Fig 4 :

 the symbol arrows called as Edges that represent the

flow of control

 Circles are called as nodes, which represent one or

more actions.

 Areas bounded by edges and nodes called regions

Fig. 4 Flow Graph .

B. Cyclomatic Complexity (CC)

The notion of Cyclomatic complexity was presented by

McCabe. Cyclomatic complexity is software metric that

delivers a quantitative degree of the logical difficulty of

a program. Cyclomatic Complexity (CYC) is derived as

the number of edges of the program’s control-flow

graph minus the number of its nodes plus two times the

number of its linked components. Cyclomatic

complexity purely depends on the Control Flow Graph

(CFG) of the program to be tested [14] complexity is

computed in one of three ways [13]:

24

 The number of regions of the flow graph

corresponds to the Cyclomatic complexity.

 Cyclomatic complexity V(G) for a flow graph G

is defined as V(G)=E-N+2

 Where E is the number of flow graph edges and N

is the number of flow graph nodes.

 Cyclomatic complexity V(G) for a flow graph G is

also defined as v(G)=P+1

 Where P is the number of predicate nodes contained

in the flow graph G.

C. Determine Independent Paths

The value of V(G) Provides the upper bound on the

number of linearly independent paths through the

program Control structural .Through the Control flow

graph in fig. 5 we expect to specify six Paths:

Path 1: 1-2-10-11-13

Path 2: l-2-10-12-13

Path 3: 1-2-3-10-11-13

Path 4: 1-2-3-4-5-8-9-2- . . .

Path 5: 1-2-3-4-5-6-S-9-2- . . .

Path 6: 1-2-3-4-5-6-7-8-9-2- . . .

The ellipsis (. . .) Following paths 4, 5 , and 6 indicates

that any path through the remainder of the control

structure is acceptable It is often worthwhile to

Identify predicate nodes as an aid in the derivation of

test cases. In this case, nodes 2,3,5,6 and 10 are

predicate nodes [13].

Fig. 5 Control Flow Graph

D. Deriving Test Cases

Data should be chosen so that conditions at the

predicate nodes are appropriately set as each path

is tested. Each test case is executed and compared to

expected results. Once all test cases have been

completed, the tester can be sure that all statements

in the program have been executed at least once

[13].

IV. INTELLIGENT WATER DROP ALGORITHM

IWD algorithm [2-3] is a swarm-based optimization

algorithm, simulated from observing natural water

drops in river. IWD has been applied to various

problems like Travelling Salesman Problem (TSP), N-

queen puzzle ,Multidimensional Knapsack Problem

(MKP (etc. These results have proved the significance

of IWD algorithm over other swarm optimization

algorithms. Another solution for TSP using IWD

algorithm [2] is introduced where proposed algorithm

converges very fast to the optimum solution.The

improved IWD algorithm [4] has been applied to

solve the air robot path planning in dynamic

environments and results are quite impressive over

genetic algorithm and ACO algorithm Since IWD has

not yet been applied to the area of software testing and

the effective results have been produced for various

problems, this paper tries to derive a solution model

for software testing using IWD in the hope that

expected results will be more significant than the

current solutions available for test data generation.

Before moving to the proposed solution of IWD,

general introduction is provided which describes its

strategy along with available metrics in it.

 IWD algorithm is a new swarm-based

optimization algorithm inspired from natural rivers. In

a natural river, water drops move towards center of

the earth, due to some gravitational force acting on it.

Due to this the water drop follows the straight and the

shortest path to its destination [3]. Pictorial

representation of basic IWD is shown in Fig 6. In

ideal conditions it is observed that the optimal path

will be obtained. Water drop flowing in the river has

some velocity which is affected by another actor, i.e.,

soil.

22

Fig. 6 Pictorial representation of IWD.

Some changes that occurred while transition of water

drop from one point to another point are:

1. Velocity of water drop is increased.

2. Soil content in the water drop is also increased.

3. Amount of soil in the riverbed from source to

destination get decreased.

Water drop in the river picks up some soil in it when

its velocity gets high and it releases the soil content

when its velocity is less [7] Some of the prominent

properties of the natural water drop are taken, based

on which IWD is suggested. IWD has the two

following important properties:

1. The amount of soil the water drop carries, which

is represented by Soil (IWD)

2. The velocity of water drop with which it is

moving now, denoted by Velocity (IWD (

Value of both the properties may change during the

transition. Environment contains lots of paths from

source to destination [4] which may be known or

unknown .When the destination is known, IWD

follows the best path to reach the destination (best is

in terms of cost and any other desired measure .)When

destination is unknown it finds the optimal

destination. From the current location to the next

location Velocity (IWD) is increased by an amount ,

which is nonlinearly proportional to the inverse of the

amount of soil between the two locations ,referred to

as the change in velocity. The Soil)IWD), is also

increased by extracting some soil of the path between

two locations. The amount of soil added to the IWD is

inversely (and nonlinearly) proportional to the time

needed for the IWD to pass from its current location

to next location. IWD chooses the path with less soil

content. In the proposed approach, IWD is applied

over the Control Flow Graph (CFG) to obtain the

number of paths available in the program .The CFG

depicts the logical control flow of the program [13].

All linearly independent paths could be obtained by

CFG .Independent path is the path in the program that

determines at least one new set of processing

statement. In other words it introduces at least one

new edge in the graph. Number of available paths can

be obtained by finding the Cyclomatic complexity of

the graph [13].

IWD algorithm has the following steps:

Step 1 : Initialize static and dynamics parameters

Step 2 : Put IWD on root node of the graph(CFG).

Step 3 : Calculate probability for choosing next node

(j) from available pathof node (i).

Step 3.1: Probability can be find using formulae

In Eq.(1)

 …. (1)

where, paths (i) = number of path from node (i) yet to

be explored (CC(i)),∑soil(i,k) = Sum of the soil of

every path i to k, i≠k.

 Probability formulae is used for finding probability of

a path when there are two nodes are avail-able for

moving forward from the current node (i). This

function can also tackle the blocked path situation.

Along with that for handling the situation of paths

having same CC, the concept of soil has also been

introduced in the fitness function which is likely to be

varied for the different paths .Step 3.2: Using the

formulae as mentioned in Step-3.1, find probability

for all outgoing paths from the current node (i)

Step 4: Choose next path which is having greatest

probability because it is the optimal path where many

other paths are yet to be explored, e.g., p(1,2) > p(1,3),

then choose path(1,2) and add it to the visited path

list.

Step 5: Update the Vel (IWD)(denoted by velIWD)

moving from node (i) to node (j)as Eq.(2).

 ……(2)

where, vel IWD (t+1) is the updated velocity of IWD.

Step 6: Update time parameter for IWD as Eq.(3)

23

 …..(3)

HUD (j) = CC of CFG × CC at node (j) where, a local

heuristic function HUD(j) has been defined for a

given problem to measure the undesirability of an

IWD to move from one location to the next.

Step 7: For the IWD, moving on path node (i) to node

(j), it computes the change of soil as shown in Eq.(4).

 ……(4)

Where, ∆soil(i,j) which IWD loads from path while

traversing through that path Step 8. Update the Soil

(IWD) (denoted by soilIWD) by some amount which it

has loaded from pathas shown in Eq(5).

 soilIWD= soilIWD+ ∆soil(i,j) …..(5)

Step 9: Update the soil of path between node (i) and

node (j) as Eq(6).

 soil(i,j) =soil(i,j) - ∆ soil(i,j) …..(6)

Step 10: Repeat Step-3 to Step-9 until it encounters

the end node or already visited node.

Step 11: Store the whole path as one of the final

independent path in Path_List and decrease CC by 1

Step 12: Repeat Step-2 to Step-11 until, CC (root

node) != 0 .

V. EXPERIMENT RESULTS

This section shows the result of the execution of

algorithms, in order to determine the effectiveness and

feasibility of the algorithm. Algorithms demonstrate

that it is a reasonably accurate technique in terms of

the paths covered using IWD Algorithm ,The (IPGT)

applied in programs continues if-else states.

A. First program continues if-else state and the

source code is shown below in Fig 7.

Fig.7 source code of first program

This source code is chosen by IPGT and will

generate independent paths for it and the result is :

1. Node number=12

2. Edge number=14.

3. Every edge in program and the nodes that make it

and state that represent it as shown below in table

I.

4. The Control Flow Graph (CFG) of the program

that shown in Fig 8

TABLE I

Edges and Nodes of first program

States Nodes Edges

If 0 ---> 1 edge[1]

If 1 ---> 2 edge[2]

yes 2 ---> 3 edge[3]

else 2 ---> 4 edge[4]

Re. 4 ---> 5 edge[5]

Le. 3 ---> 5 edge[6]

else 1 ---> 6 edge[7]

If 6 ---> 7 edge[8]

yes 7 ---> 8 edge[9]

else 7 ---> 9 edge[10]

Re. 9 ---> 10 edge[11]

Le. 8 ---> 10 edge[12]

Re. 10 ---> 11 edge[13]

Le. 5 ---> 11 edge[14]

Fig.8 control flow graph of first program

24

5. The result when applied IWD algorithm in the

first program is:

 The no of independent paths is 4

V(G)=14-12+2=4

 The cyclomatic complexity of each node :

node [0] = 4 , node [1] = 4, node [2] = 2, node

[3] = 1, node [4] = 1, node [5] = 1, node [6] = 2,

node [7] = 2, node [8] = 1, node [9] = 1, node

[10] = 1, node [11] = 1.

 The independent paths is :

path [1] : 0 1 2 3 5 11

path [2] : 0 1 2 4 511

path[3] : 0 1 6 7 8 10 11

path [4] : 0 16 7 910 11

 Time is:0.0080 second.

B. Second program continues and the source code is

shown in fig. 9.

Fig.9 Source code of the second program

This source code is chosen by IPGT and will

generate independent paths for it and the result is :

1. Node number=5

2. Edge number=5

3. Every edge in program and the nodes that make

and state as shown in table II below.

4. The Control Flow Graph (CFG) of the program

that shown in Fig 10.

5. The result when applied IWD algorithm in the

second program is :

 The no of independent paths is 2

 V(G)=5-5+2=2

 The cyclomatic complexity of each node :

node [0] = 2, node [1] = 2, node [2] = 1

 node [3] = 1, node [4] = 1

 The independent paths is :

path[1]: 0 1 2 4

path[2]: 0 1 3 4

 Time is:0.059 second

Table II

Edges and Nodes

Edges Nodes States

Edge[1] 0 --->1 if

Edge[2] 1--->2 yes

Edge[3] 1--->3 else

Edge[4] 2--->4 Le.

Edge[5] 3--->4 Re.

Fig. 10 control flow control of second program

VI. CONCLUSION

1. The automatically generation of test paths

provides to software development team many

advantages :

• reduces the time taken to generate

independent path in software testing.

• reduces the effort and the burden for the team

during the compilation of software testing .

• reduces the cost for the software developer

organization.

2. The use of artificial techniques to help

software engineering gives a strong support to

software engineering, particularly in the

software testing phase.

3. Application of IWD algorithm in the

generation of independent paths in the

program have a great benefit in software

Engineering.

25

VII. REFERENCES

[1] A. Windisch, S. Wappler, J. Wegener,

"Applying Particle Swarm Optimization to

Software Testing", ACM, 2007, pp.1121-

1128.

[2] F. N. Raza, , "Artificial Intelligence

Techniques in Software Engineering"", In

Proceedings of the International Multi

Conference of Engineers and Computer

Scientists, Vol.2174,2009, pp.1086-1088.

[3] H. Afaq1 , S. Saini , " On the Solutions to

the Travelling Salesman Problem using

Nature Inspired Computing Techniques",

IJCSI International Journal of Computer

Science Issues, Vol. 8, No. 2,2011, pp. 326-

334.

[4] S. Singla, D. Kumar, H M Rai, P. Singla," A

Hybrid PSO Approach to Automate Test

Data Generation for Data Flow Coverage

with Dominance Concepts", International

Journal of Advanced Science and

Technology, Vol. 37, 2011,pp.15-26.

[5] H. Schligloff , M. Roggenbach, " Path

Testing" , Advanced Topics in Computer

Science: Testing, citeseer ,2002.

[6] H. Tahbildar ,B. Kalita , "automated

software test data generation: direction of

research", International Journal of Computer

Science & Engineering Survey (IJCSES)

Vol.2, No.1, 2011,pp. 99-120.

[7] R. S. Pressman , "Software Engineering A

Practitioner’s Approach, FIFTH

EDITION",5th, McGraw-Hill

Company,2001.

[8] Lam S. S. B., Raju M L H. P., Kiran M U.,

Ch S., Srivastav P. R.,2012, Automated

Generation of Independent Paths and Test

Suite Optimization Using Artificial Bee

Colony, Elsevier , International Conference

on Communication Technology and System

Design,pp.191-200.

[9] Jovanovic , Irena," Software Testing

Methods and Techniques",2008,pp.30-41.

[10] M. E. Khan, " Different Forms of Software

Testing Techniques for Finding Errors",

IJCSI International Journal of Computer

Science Issues, Vol. 7, No 1, 2010, pp. 11-

16.

[11] S. S. Dahiya, J. K. Chhabra, Sh. Kumar , "

Application of Artificial Bee Colony

Algorithm to Software Testin21st Australian

Software Engineering Conference,

,2010,pp.149 IEEE -154.

[12] P. R. Srivastava , T. Kim," Application of

Genetic Algorithm in Software Testing"

,International Journal of Software

Engineering and Its Applications,Vol.3,

No.4,2009,pp.87-96

[13] R. S. Pressman , "Software Engineering A

Practitioner’s Approach, Seventh

Edition",7th, McGraw-Hill Company ,2010.

[14] S. Nidhra, J. Dondeti," BLACK BOX AND

WHITE BOX TESTING TECHNIQUES–A

LITERATURE REVIEW" ,International

Journal of Embedded Systems and

Applications (IJESA) Vol.2, No.2,

2012,pp.29-50.

	I. INTRODUCTION
	II. RELATED WORK
	III. TESTING IN SOFTWARE ENGINEERING
	 The basis path testing
	A. Flow Graph Notation
	B. Cyclomatic Complexity (CC)
	C. Determine Independent Paths

	Fig. 5 Control Flow Graph
	D. Deriving Test Cases

	IV. INTELLIGENT WATER DROP ALGORITHM
	Some changes that occurred while transition of water drop from one point to another point are:
	1. Velocity of water drop is increased.
	2. Soil content in the water drop is also increased.
	3. Amount of soil in the riverbed from source to destination get decreased.
	Water drop in the river picks up some soil in it when its velocity gets high and it releases the soil content when its velocity is less [7] Some of the prominent properties of the natural water drop are taken, based on which IWD is suggested. IWD has ...
	1. The amount of soil the water drop carries, which is represented by Soil (IWD)
	2. The velocity of water drop with which it is moving now, denoted by Velocity (IWD (
	Value of both the properties may change during the transition. Environment contains lots of paths from source to destination [4] which may be known or unknown. When the destination is known, IWD follows the best path to reach the destination (best is ...
	IWD algorithm has the following steps:
	Step 1 : Initialize static and dynamics parameters
	where, paths (i) = number of path from node (i) yet to be explored (CC(i)),∑soil(i,k) = Sum of the soil of every path i to k, i≠k.
	Probability formulae is used for finding probability of a path when there are two nodes are avail-able for moving forward from the current node (i). This function can also tackle the blocked path situation. Along with that for handling the situation ...
	Step 4: Choose next path which is having greatest probability because it is the optimal path where many other paths are yet to be explored, e.g., p(1,2) > p(1,3), then choose path(1,2) and add it to the visited path list.
	Step 5: Update the Vel (IWD)(denoted by velIWD) moving from node (i) to node (j)as Eq.(2).

	V. EXPERIMENT RESULTS
	VI. CONCLUSION

